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Abstract. The selective excitation of a set of frequencies in molecular dynamics simulations
of complex nonlinear systems can be achieved via a series of quenches, properly spaced in time.
The method, inspired by the temperature echo effect, is potentially useful in the study of the
relaxation of large systems where exact normal mode analysis is numerically very demanding
(glasses, polymers, biomolecules). We apply the method to the relaxation of a Lennard–Jones
glass, taken as an example of a disordered nonlinear system.

1. Introduction

In this paper we present a method to prepare a microcanonical molecular dynamics (MD)
systems in states characterized by a given set of frequencies, and its application in the study
of relaxation of these states. The method was inspired by the temperature echo effect.

Temperature echo is observed in MD simulations of many body systems. If two
quenches, in which all velocities are set to zero, are imposed in a constant energy MD
simulation, then a spontaneous reduction in the temperature of the system is observed after
the second quench, at a time equal to the interval between the quenches (see figure 1, where
we show an example of temperature echo in a simulation of a Lennard–Jones mixture,
described in section 3). The effect was originally found and investigated by Grestet al
[1–4], in their study of Lennard–Jones computer glasses in the early 1980s. In 1993 Becker
and Karplus [5] revived the temperature echo effect in MD simulations of proteins. A
straightforward explanation of this phenomenon has been given [1]: before the first quench
the system is equilibrated, so that the energy is equally shared by the normal modes and each
normal mode gives the same contribution to the kinetic energy (i.e. temperature). At the
time of the first quench all the phases are set to the same value. Thent0, the time interval
between quenches, selects those modes whose frequencies are near a multiple ofπ/t0.
These modes are the only ones which retain their kinetic energy, which is approximately
zero at the time of the second quench; all other modes are damped. The temperature after
the second quench is then dominated by the selected modes which have again zero kinetic
energy after a timet0, and this explains why at this time a negative peak is observed in the
time course of the temperature of the system. In early studies and in the letter of Becker
and Karplus [5] the temperature echo has been proposed as a tool to extract the density
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Figure 1. Example of temperature echo in the microcanonical MD simulation of a Lennard–
Jones mixture (see section 3). The graph shows, in arbitrary units, the kinetic energy as a
function of reduced timet , from an arbitrary origin. At timest = 0.0 andT = 3.5 all the
velocities are quenched to zero. The temperature echo is seen as a negative peak att = 6.0.
The reduced energy per particle in this run isε = 10−3. Note that after each quench the kinetic
energy is approximately halved.

of states, to select specific normal modes and to study anharmonicities in MD of complex
systems, but, to our knowledge, it has not received further attention.

The method that we propose here is simple to implement and effective in the selective
excitation of a set of frequencies in MD simulations of Hamiltonian nonlinear systems
with many degrees of freedom. Of course, in all cases where normal mode analysis is
straightforward, it is not necessary to have an alternative method of selective excitation of
single modes. However, particularly in the study of protein dynamics, a complete normal
mode analysis based on the diagonalization of the Hessian matrix is computationally very
demanding, both in computer memory and in CPU time [6, 7]. Currently, there is much
research devoted to the study and the construction of fast diagonalization algorithms for large
proteins [8–10]. There is also numerical evidence that the relevant dynamics is dominated
by a small subset of modes, generally of a low frequency [11, 12]. We think that our method
could fit in this line of research, as an alternative to the determination of the full spectrum
of normal modes through diagonalization procedures. This could be useful in the study of
complex systems such as proteins, but also glasses and polymers.

In section 2 we illustrate, in detail, the method and its potentiality for the study of
the relaxation in MD of Hamiltonian systems as a function of the energy density. In this
paper, where we want to present the method, we have chosen, as a model of a nonlinear
disordered system, a 500 particles Lennard–Jones glass, described in section 3, which is
computationally not very demanding, but interesting to show the potentiality of the method.
In section 4 we present some results. The conclusions are given in section 5.

2. The method

The original temperature echo as a tool to prepare a model system in an initial condition
which corresponds to the excitation of a single mode has some drawbacks. First, to enhance
the selection effect a long sequence of quenches is needed; but at each quench the system is
cooled and, to keep the temperature constant, energy has to be fed into the system. Secondly,
the choice of a given time interval between quenches,t0, does not simply imply selection of
a single mode; in fact, as already mentioned, after a sequence of quenches higher harmonics
also survive, and not only the modes of the chosen angular frequencyπ/t0. Thirdly, if the
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proper frequencies of the system are close to each other then the simple selection of a given
interval between subsequent quenches always implies selection of a group of frequencies
around the desired one. In the following we show how to circumvent all these drawbacks.

Suppose to knowx0, a stable equilibrium configuration of the system. The potential
energy is measured with respect to this equilibrium configuration, that is not necessarily
that corresponding to the absolute minimum of the potential energy. The dynamics is
started with random initial conditions aboutx0. As explained in section 1, a kinetic energy
quench is realized putting instantaneously all the velocities equal to zero, and leaving the
positions unchanged. We will also use potential energy quenches, that are realized putting
instantaneously all the positions equal to the equilibrium positions. A sequence of both kinds
of quenches is required to select a given frequency without its harmonics. Moreover, it is
possible to restore the total energy in the system by rescaling all the velocities immediately
after the potential energy quenches, when the potential energy is zero. We do this each time
that we perform a potential energy quench.

When energy is very low the time evolution of a system is very well described by
the superposition of normal modes. In the following we consider simulations at very low
energy;Qi stands for a generic normal mode. Once the selection procedure is complete,
the total energy of the system can be set to any chosen value via rescaling of the velocities.

2.1. Preparation of the system

It is convenient to perform the first quench when the phases of the normal modes are
effectively random. This can be achieved by letting the system evolve for a sufficiently
long thermalization timeT0. After this thermalization time,T0, we begin our series of
quenches to select a chosen frequencyω0; we denote witht0 the half periodπ/ω0 of the
corresponding mode. We remark that during the whole quenching procedure the integration
time-step of the simulation is adapted so that the time intervals between two quenches are
realized by an integer number of time-steps.

First, we perform a first series of quenches of the potential energy, separated byt0.
After this first series only the modes with frequency approximately equal tonω0 (with n

any integer) survive. This can be shown in the following way. After the first quench at
time T0 the evolution of each normal modeQi is given by:

Qi(t) = Ai sin[ωi(t − T0)] (1)

whereωi is the the corresponding frequency and the amplitudes,Ai , are such that each
mode has approximately the same energy. Equation (1) is valid forT0 < t < T0 + t0. At
time T0+ t0 a second quench is performed: this is equivalent to set all theQis to zero, and
therefore the new amplitude of each mode is determined by the velocity of the mode at that
time. Thus, after the second quench the dynamics ofQi is given by:

Qi(t) = C1Ai cos(ωit0) sin[ωi(t − T0− t0)] (2)

valid for T0 + t0 < t < T0 + 2t0. The constant,C1, is introduced to take into account that,
as previously explained, after each potential energy quench the total energy of the system
is restored. It can be easily seen that after thepth quench the dynamics ofQi is given by:

Qi(t) = C2Aicosp−1(ωit0) sin[ωi(t − T0− (p − 1)t0)] (3)

with another constantC2. From equation (3) one can see that, sincet0 ≡ π/ω0, Qi will be
strongly damped ifp is sufficiently large, unlessωi ≈ nω0, wheren is any integer.
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Next we perform other series of quenches to damp the multiples ofω0. A very efficient
way to damp the harmonics without affecting the selected fundamental frequency, is to
alternate potential and kinetic energy quenches.

We first show how we can damp all the even multiples ofω0. We perform alternated
kinetic energy quenches and potential energy quenches; the time interval between two
consecutive quenches is1

2t0 (which is also the time between the last quench of the first series
of potential energy quenches and the first quench of this series of alternated quenches).

Let us now, for convenience, denote withT1 the time of the last quench of the first
series:T1 ≡ T0 + (p − 1)t0. After the first kinetic energy quench the dynamics ofQi is
given by:

Qi(t) = C2Ai cosp−1(ωit0) sin( 1
2ωit0) cos[ωi(t − T1− 1

2t0)] (4)

valid for T1 + 1
2t0 < t < T1 + t0; the factorC2 is the same as that of equation (3) since

after the kinetic energy quenches the total energy of the system is not restored. After the
first potential energy quench we have instead:

Qi(t) = −C3Ai cosp−1(ωit0) sin2( 1
2ωit0) sin[ωi(t − T1− t0)] (5)

valid for T1+ t0 < t < T1+ 3
2t0. It is clear that afterq kinetic energy andq potential energy

quenches we have:

Qi(t) = (−1)qC4Ai cosp−1(ωit0) sin2q( 1
2ωit0) sin[ωi(t − T1− qt0)]. (6)

One can see thatQi will be strongly damped unlessωi ≈ (2n+ 1)ω0, n = 0, 1, 2, . . ..
In all our runs we have found that aq as low as 1 or 2 is sufficient for a complete

suppression of the even frequencies. In fact, the quantity sin( 1
2ωit0) in the equation above

is very close to zero for the frequenciesωi ≈ 2nω0, n = 0, 1, 2, . . .
Odd harmonics are damped in the following way. Analogously to the damping of the

even multiples ofω0, we perform alternated kinetic energy quenches and potential energy
quenches; but now the time interval between quenches is1

3t0. It can be seen that afterr
kinetic energy andr potential energy quenches we have (denotingT2 ≡ T1+ qt0):

Qi(t) = (−1)q(−1)rC5Ai cosp−1(ωit0) sin2q( 1
2ωit0) sin2r ( 1

3ωit0) sin[ωi(t − T2− rt0)]. (7)

Among the odd harmonics, after this last series of quenches the harmonics of the form
ωi ≈ 3(2n + 1)ω0, n = 0, 1, 2, . . . have been damped, as can be easily deduced from
equation (7). Also in this case, a very smallr (1 or 2) is sufficient.

The procedure continues performing, in principle, a series of quenches (always
alternating kinetic and potential energy quenches) for each prime number. In practice,
few such series will be needed, since the values of the proper frequencies of a system are
bounded; in this work we have found that, for the frequencies that we have considered, we
had to use no more than five series. The time interval between quenches, for the series
associated with the prime numberp, is taken as(p − 1)t0/2p. This choice has prevailed
on the more natural choice of a time interval equal tot0/p, since it is more efficient in
rejecting the harmonics without damping the fundamental.

At the end of the above procedure only the frequenciesωi ≈ ω0 are excited. It is
possible to eliminate the frequencies very close to the selected one by performing a new
series of ‘dilated’ potential energy quenches, separated by a timent0, with n an integer> 1.
In fact, the phase shift between the two close frequencies,ω0 andω0+ ε, is larger afternt0
than aftert0, increasing linearly withn. This makes the damping ofω0+ ε more efficient;
we have found that with this last step we can excite only one frequency.

The above selection procedure is performed at low energy. After the last quench of
the potential energy the system is left in the equilibrium configurationx0, with a set of
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velocitiesv0, corresponding to the selected frequency. If a simulation is started fromx0

with a rescaledv0, then one can study the dynamics at higher energy with only one mode
initially excited.

2.1.1. Selection of two or more frequencies.It is possible to select initial conditions which
correspond to the excitation of two or more frequencies. At low energy normal modes
are uncoupled and superpositions of initial conditions imply superposition of the dynamics.
Therefore, by summing thev0s corresponding to different selected frequencies, (and by
proper rescaling to set the energy), one can originate a dynamics in which only the chosen
selected modes are initially present.

2.2. Relaxation and mode locking

One of the aims of the selection technique that we are presenting in this paper is the
investigation of the degree of coupling of a particular mode or group of modes. Raising of
the energy should induce an irreversible decay of the prepared state on shorter and shorter
time scales, due to the coupling of the modes. To monitor the outflow of the energy from
the initially selected mode(s) to the others, we use here a relaxation function which is
a projection of the phase point of the system onto the vector(s)v0 corresponding to the
initially excited mode(s). In more detail, at each time-step of the run we collect the set
of velocitiesv(t) and of the displacements from the equilibrium positionsx(t)− x0. The
relaxation functiondi(t) associated with theith initially excited mode, is defined by:

di(t) = Bi [〈v(t)|M|v0i〉2+ 〈(x(t)− x0)|M|v0i〉2ω2
0i ] (8)

whereBi is a normalization factor such thatdi(0) = 1, ω0i is the frequency of theith
initially selected mode, andv0i the corresponding vector of initial velocities; the matrixM
in the scalar products is the mass matrix of the system. In the absence of nonlinearity (i.e.
of coupling), and therefore of decay, we would havedi(t) = 1 for all t , since in that case
it would be〈v(t)|M|v0i〉 ∝ ω0i cos(ω0i t) and〈(x(t)− x0)|M|v0i〉 ∝ sin(ω0i t).

How the spreading of the energy lost by the initially excited modes affects the entire
spectrum of the system can be studied in the following way. After the high energy trajectory
has evolved for a certain time, one can go back to low energy (rescaling the velocities and the
positions as explained below in section 4, where reference to figure 6 is made), damping back
the coupling among the excited modes which are then locked. By performing a suitably long
low-energy dynamics and by Fourier transform one can have information on which modes
were excited by the high energy dynamics. Of course this rescaling back to low energy
is not meaningful if during the high energy dynamics there is a structural rearrangement
of the system, such that the dynamics evolves about a local minimum different fromx0.
However, the functiondi(t) defined above is able to show if such a jump has occurred (see
figure 4 below).

3. The model

To test the applicability of the selection method we have chosen a widely studied computer
glass: a mixture of two types of classical Lennard–Jones particles [13]. The two
types of particles are labelled byA and B, both types have the same massm. The
interaction potential between particles of typeα and β (with α, β ∈ {A,B}) is given
by: Vαβ(r) = 4εαβ [(σαβ/r)12 − (σαβ/r)6]. We have used reduced units withσAA as a
unit of length,εAA as a unit of energy andm as a unit of mass; in reduced units time is
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measured in units ofτ = (mσ 2
AA/εAA)

1/2. For argonτ corresponds to 2.2 ps. In these
units the parameters of our potential are:εAA = εAB = εBB = 1, σAA = 1, σBB = 1.2, and
σAB = (σAA+σBB)/2= 1.1. The total number of particles,N , is 500, the sum ofNA = 375
andNB = 125. The reduced density has been chosen to beρσ 3

AA ≡ ρ∗ = N/V ∗ = 1.0,
that fixes the reduced volume toV ∗ ≡ V/σ 3

AA = 500; the system is therefore enclosed in
a cubic box of edge 5001/3σAA. Periodic boundary conditions have been enforced and the
potential has been truncated and shifted at a cut-off distance of 2.5σAA. Microcanonical MD
trajectories have been generated via a bilateral symplectic integrator [14] which is simple,
fast and precise. The time-step has been 0.005τ , except between quenches, when it has
been properly adapted (see section 2). Starting from a well equilibrated high-energy initial
condition in the liquid state the system has been cooled down via a schedule of rescalings in
the velocities. At the end an amorphous state has been reached, as we have checked from the
absence of diffusion and by an inspection of the various radial correlation functionsgαβ(r).
This Lennard–Jones glass is our system, characterized by one of its mechanically stable
equilibrium configurations. We have chosen, for the low-energy selection procedure, an
energy density (i.e. the total energy divided by the number of particles, in reduced units) of
ε = 10−8. In this situation the normal modes are effectively uncoupled, as can be predicted
from the values of the parameters of the potential energy of our system; besides, we havea
posteriori checked this, looking at thedi(t) of the selected mode(s), that do not decay from 1.

4. Results

As we reported in section 2, our selection procedure can be divided into different stages: (i)
a series of potential energy quenches which select a given frequency with all its harmonics;
(ii) even and odd harmonics are rejected via subsequent series of alternated quenches:
kinetic energy quenches, each one followed by a potential energy quench. In each series
the quenches are separated by1

2t0, 1
3t0, 2

5t0, 3
7t0, . . .; (iii) final rejection of frequencies lying

close to the selectedω0 is obtained with a last series of ‘dilated’ potential energy quenches
separated bynt0, with n an integer> 1. In the following and in the figures, we will always
use the reduced units, introduced in section 3.

We focus on the kinetic energy of the system, because it is the simplest collective
observable, and it is proportional to the temperature of the system. The power spectrum of
the kinetic energy, in a generic run at low energy, shows all the proper frequencies (actually
this spectrum displays the double of each proper frequency, since the kinetic energy is
given by the square of the velocities). In figure 2 we show the time courses of the kinetic
energy (left column), and the corresponding power spectra (right column), recorded during
the selection of a given frequency of the Lennard–Jones glass atε = 10−8. The frequency
chosen here,ω = 3.95, is simply one of the many appearing in the low-energy spectrum of
the system. In each row of the figure we show the kinetic energy after having performed
the selection up to a given stage: in the top row we have the system after stage (i) described
above; the spectrum is made of harmonics (note that the seventh harmonic nearω = 55
is dominant). The frequency to be selected appears in the power spectrum of the kinetic
energy as a small peak near 7.9, the double ofω = 3.95. In the second row only odd
harmonics are left. In the third row we show the kinetic energy of the system after we have
completed stage (ii) above; in the power spectrum a group of frequencies is left; of these
the less pronounced is that to be selected. After the last stage, based on a series of ‘dilated’
quenches, only the frequencyω = 7.9 is present (bottom row).

After having illustrated a typical selection procedure, in the following we present a
few applications of the method to outline its potentiality in the study of the relaxation of
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Figure 2. Normalized kinetic energy and the corresponding power spectra after various stages
of the selection of a mode of frequencyω = 3.95 (the frequency is doubled in the kinetic
energy) in the Lennard–Jones mixture. First row: after a series of potential energy quenches;
even and odd harmonics are present. Second row: after rejection of even harmonics. Third
row: after rejection of odd harmonics; a group of three frequencies is left. That to be selected
is the feeblest. Fourth row: after a last series of ‘dilated’ quenches; onlyω = 7.9 is left. Power
spectra were computed via a standard FFT routine.

disordered dynamical systems.
In figures 3–5 we compare the decay of the initial state at different energies. Figure 3

refers to the mode withω = 3.95, the selection of which was illustrated in figure 2. On
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Figure 3. Decay of selected mode withω = 3.95 at different energy densities. On the left:
normalized kinetic energy; on the right: relaxation function (see equation (8)) versus time. From
top to bottom:ε = 10−4, 10−3, 10−2.

the left column we show the normalized kinetic energy and on the right the corresponding
relaxation functionsd(t) (see equation (8); note that in the case of our Lennard–Jones
system the mass matrix is the unit matrix). From top to bottom the graphs refer to the
energy densities:ε = 10−4, 10−3 and 10−2, respectively. At the higher energy density the
memory of the initial state is rapidly lost; the relaxation function decays at zero after 40
time units. At the lower energies the decay of the relaxation function is more complex;
apart from the slow oscillation which we do not discuss here, a fast and a slow component
are present: the energy density affects both components. Let us remark that, near the kinetic
glass transition temperature, the self-part of the density autocorrelation function has a similar
behaviour to a fast ‘β-relaxation’, followed by a slower ‘α-relaxation’ [13]. Figure 4 is
similar to figure 3, but refers to the mode withω = 2.32. This mode is less stable than the
other; the decay of the relaxation function at the lower energy densities is comparatively
faster. Moreover, atε = 10−2 there is a jump in the relaxation function which is due to a
structural rearrangement of the solid involving a group of particles jumping out from their
initial positions, as we have checked by looking at the trajectory of the system.
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Figure 4. Decay of selected mode withω = 2.32. The energy densities are the same as in
figure 3. From top to bottom:ε = 10−4, 10−3, 10−2. Note that the decay is faster than the
decay forω = 3.95, at the higher energy density there is a jump in both kinetic energy and
relaxation function due to a structural rearrangement of particles.

In figures 3 and 4 it is evident that, looking at the time course of the kinetic energy,
one can, at least qualitatively, infer the behaviour of the relaxation function of the single
excited mode. This is not the case when two or more selected modes are initially excited
(see section 2.1.1). In this kind of dynamics the kinetic energy signal is affected by all
the excited modes and it is useful to compute individual relaxation functions projecting
the phase point onto thev0 of each excited mode. In figure 5 we compare the relaxation
functions of modes withω = 2.32 andω = 15.91 when singly excited (figures 5(a) and
(b) respectively) and when superposed (figures 5(c) and (d) displaying individual relaxation
functions) at an energy density ofε = 10−3. It is interesting to note that the slow decay of
the high frequency mode is greatly influenced by the presence of the other while the fast
decay of the low frequency mode is quite independent.

These results show that, combining our selection procedure with the analysis of the
relaxation functions, it is possible to explore the relaxation behaviour of a given system as
a function of both the energy density (i.e. the nonlinear coupling between modes) and the
set of frequencies initially excited.
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Figure 5. (a) Relaxation functions of a mode withω = 2.32 and (b) relaxation functions of a
mode withω = 15.91, when singly excited. When both modes are excited the corresponding
relaxation functions become (c) and (d). It is worth noting the change in the decay ofω = 15.91
induced by the simultaneous excitation ofω = 2.32.

In figure 6 we show an application of the technique of mode locking to have information
on the spreading of energy from a single excited mode towards the other excitable
frequencies in the system. Consider the simulation shown in the centre row of figure 4, in
which the initial state is given by the excitation of the mode withω = 2.32 at an energy
density ofε = 10−3. At six different times:ta = 2, tb = 15, tc = 30, td = 57, te = 112 and
tf = 167, the velocities and the displacements from the equilibrium positions are recorded
and then scaled back to giveε = 10−8. From these sets of initial conditions we have started
six low energy MD runs. In figures 6(a)–(f ) we show the power spectra of the kinetic
energy in the different low energy runs. Each panel refers to the locking of the frequency
spectrum at the subsequent timesta, . . . , tf in the run atε = 10−3. It is evident that the
spreading in frequency is due to the nonlinearity of the dynamics in the high energy run.
With some refinements this mode locking procedure could be used to quantitatively study
the frequency channels in the decay of a given initial state.

5. Conclusions

In this paper we have shown how to prepare a generic Hamiltonian system in states with
selected frequencies initially excited. Via a simple rescaling of the velocities it is possible
to study, at different energy densities, the effects of the nonlinearities on the relaxation of
the prepared state. As an illustration we have shown the effectiveness and potentiality of
the method on a computer Lennard–Jones glass, taken as an example of disordered system.

Selection of modes of a given frequency could also be achieved with a sufficiently long
application of a periodic forcing on the system. A continuous cooling would be, in this
case, necessary to avoid overheating. Besides we remark that with the forcing procedure
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Figure 6. Power spectra of the kinetic energy in six low energy (ε = 10−8) MD runs. Each run
started from rescaled initial conditions originally recorded at different times in a run atε = 10−3

with only frequencyω = 2.32 initially excited. See text for recording times.

the selection of the resonant frequency goes linearly with time, while in our quenching
procedure it is exponential, as can be inferred from equation (3) (see also comments after
equations (6) and (7)).

The study of the energy relaxation among normal modes has been extensively carried out
on simple nonlinear lattices, where normal modes are readily computed (see, e.g. [15–17]).
In these works the relaxation of the energy towards equipartition is numerically investigated
on the basis of approximate analytical estimates [17], or on phenomenological approaches
making use of the so-called spectral entropy [15, 16]. The effect of nonlinearity has also
been studied through the decay of correlation functions of normal modes [18]; however, it
is not obvious that a decaying correlation function gives information on the relaxation of
the related normal modes [19]. The relaxation functions here, introduced in section 2, offer
a direct way to evaluate the degree of coupling of selected modes.

The study of the dynamics in complex systems has concerned different aspects. In
glasses or glass-forming liquids the attention has been concentrated on the dynamical
signatures of the glass transition, based mainly on the so-called mode-coupling theory
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(MCT) [20]. In this respect we notice that in [1] there was a proposal for the use of echo to
determine the coupling between modes in glassy systems; in our work we believe to have
followed that suggestion. In proteins the focus has been mainly on the characterization of
normal modes, through their structural [6] and dynamical [8, 12] properties; however, also
the effects of anharmonicities have been the subject of study [21–23].

From these last remarks we can conclude that the selection method presented in this
paper could find a particularly relevant application in the study of models of glasses and
of models for the dynamics of proteins and nucleic acids. Simulations in these fields are
numerically intensive, requiring systems with many thousands of degrees of freedom.
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